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Abstract 18 

There is a strong economic incentive to reduce mite-vectored virus outbreaks. Most outbreaks in 19 

the central High Plains of the United States occur in the presence of volunteer wheat that 20 

emerges before harvest as a result of hail storms.  This study provides a conceptual framework 21 

for developing a risk map for wheat diseases caused by mite-vectored viruses based on pre-22 

harvest hail events. Traditional methods that use NDVI were found to be unsuitable due to low 23 

chlorophyll content in wheat at harvest. Site-level hyperspectral reflectance from mechanically 24 

hailed wheat increased canopy albedo. Therefore, any increase in NIR combined with large 25 

increases in red reflectance near harvest can be used to assign some level of risk. The regional 26 

model presented in this study utilized Landsat TM/ETM+ data and MODIS imagery to help gap-27 

fill missing data. NOAA hail maps that estimate hail size were used to refine the area most likely 28 

at risk. The date range for each year was shifted to account for annual variations in crop 29 

phenology based on USDA Agriculture statistics for percent harvest of wheat. Between 2003 and 30 

2013, there was a moderate trend (R
2
 = 0.72) between the county-level insurance claims for 31 

Cheyenne County, Nebraska and the area determined to be at risk by the model (excluding the 32 

NOAA hail size product due to limited availability) when years with low hail claims (< 400 ha) 33 

were excluded. These results demonstrate the potential of an operational risk map for mite-34 

vectored viruses due to pre-season hail events.  35 

Keywords: Remote sensing; Landsat; MODIS; NOAA Hail Product; Nebraska 36 

  37 
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Introduction 38 

Wheat (Triticum aestivum L.) is a major economic crop in Nebraska ranking fifth in 39 

terms of cash receipts (Nebraska Deparment of Agriculture, 2012) and third in volume exported 40 

(Van Meter et al., 2012). Thus, there is a strong economic incentive to minimize loss due to 41 

diseases.  Economically important diseases of wheat include those caused by viruses transmitted 42 

by the wheat curl mite (WCM, Aceria tosichella Keifer).  These viruses are wheat streak mosaic 43 

virus (WSMV; Slykhuis, 1955), Triticum mosaic virus (TriMV; Seifers et al., 2009; Tatineni et 44 

al., 2009), and Wheat mosaic virus (WMoV; Seifers et al., 1997). Surveys of wheat fields in the 45 

Great Plains of the United States determined WSMV to be the most prevalent of the three viruses 46 

(Burrows et al., 2009; Byamukama et al., 2013). Single, double, or triple infections of wheat by 47 

the viruses were confirmed, with a high frequency (91%) of co-infection with WSMV and 48 

TriMV (Burrows et al., 2009; Byamukama et al., 2013).  Co-infection of wheat by WSMV and 49 

TriMV has been shown to decrease yield by 81-96% (Byamukama et al., 2014). 50 

WCM-transmitted viruses are commonly found throughout the Great Plains of North 51 

America (Burrows et al. 2009), and the viruses have recently spread outside of North America 52 

(Schubert et al., 2015; Ellis et al., 2003; Truol et al., 2004). However, the highest risk for 53 

WSMV/TriMV outbreaks is volunteer wheat that emerges before harvest as a result of hail 54 

storms.  The WCM has a short life cycle (egg to adult in 7 to 10 days) and cannot survive for 55 

more than a few days off green plants (Wosula et al. 2015). Volunteer wheat acts as a  “green 56 

bridge” host for the WCM and viruses between summer harvest and winter wheat planting in the 57 

fall (Gibson and Painter, 1956; Shahwan and Hill, 1984). If the volunteer wheat survives until 58 

planting, WCMs disperse, aided by wind or air currents, to the emerged winter wheat crop and 59 

transmit the viruses (Somsen and Sill, 1970). Controlling volunteer wheat through herbicide 60 
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application or tillage before emergence of the winter wheat crop minimizes the risk of virus 61 

infection (Thomas et al., 2004). Therefore, identification of areas where pre-harvest volunteer 62 

wheat is likely to occur due to hail damage will facilitate timely control of volunteer wheat. 63 

Hail damage has been successfully identified in different agricultural settings  by 64 

evaluating changes to the spectral properties of vegetation (Gallo et al., 2012; Parker et al., 2005; 65 

Zhao et al., 2012). Healthy vegetation has low reflectance in the visible range of the 66 

electromagnetic spectrum due to absorption by pigments such as chlorophyll, carotenoids, and 67 

anthocyanins.  Low reflectance in the visible range is contrasted by high reflectance in the near-68 

infrared (NIR) region due to scattering at the leaf cellular level and canopy structure (Gitelson, 69 

2011). The normalized difference vegetation index (NDVI) measures the difference between 70 

canopy absorption and scattering (Tucker, 1979) and is very sensitive to changes in green 71 

(photosynthetically active) leaf area index (gLAI) values below 3 m
2
 m

-2
 (Viña et al., 2011). Hail 72 

damage alters crop canopy structure and reduces absorption by pigments, such as chlorophyll. 73 

NDVI has been used in many studies to detect hail swaths due to its sensitivity to these changes 74 

(Erickson et al., 2004; Kalb and Bentley, 2002; Molthan et al., 2013; Peters et al., 2000). 75 

However, many of these studies were done in the middle of the growing season when canopy 76 

chlorophyll is high. The period when wheat grain is most likely to germinate if dislodged from 77 

heads by hail occurs at the end of the growing season when NDVI is typically low. Therefore, an 78 

approach using changes in NDVI may not be suitable, and alternatives should be explored.  79 

The goal of this study was to develop a framework for using remote sensing products to 80 

identify high risk areas for transmission of WCM-vectored viruses to fall-planted wheat in the 81 

Nebraska Panhandle. Such products will allow farmers to execute management strategies to 82 

minimize the risk of future WSMV outbreaks. The specific objectives were to 1) identify the 83 
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spectral behavior of wheat impacted by hail, 2) select suitable raster-based data that can identify 84 

hail events and hail damage, and 3) develop a series of risk maps for Cheyenne County, 85 

Nebraska, U.S.A. between 2003 and 2013.  86 

 87 

Materials and Methods  88 

Mechanically hailed plots 89 

Rainfed ‘Pronghorn’ winter wheat was mechanically hailed using a hail simulator at the 90 

High Plains Ag Lab (41.23019N, -102.99962W) near Sidney, Nebraska, U.S.A. Treatments were 91 

arranged in a randomized complete block, split-plot design with eight replications. The main plot 92 

treatments were four different hail dates during the heading stages of wheat; middle milk 93 

(Zadoks 75), early dough (Zadoks 83), soft dough (Zadoks 85), and hard dough/ripe (Zadoks 94 

87/91). Example photographs of the hailed plots are in Fig. 1. The split-plot treatments were 95 

uncaged and caged (2m x 2m) to represent rapid and slow drying conditions, respectively, 96 

following the hail. Split-plot cages were placed one day after the hail treatment and removed 97 

seven days later. Plots were watered using a garden hose sprinkler with ca. 25 mm at 0, 2, and 4 98 

days after hail application to simulate the expected rainfall accompanying a hail event.  99 

Hail treatments were applied with a hail simulator attached to and powered by a tractor. 100 

For each plot, five 9 kg ice bags were placed in a hopper at the top of the machine and fed into a 101 

vertical feeder housing containing a rotating horizontal cylinder with spikes that crushed the ice 102 

into 4-5 cm pieces. Ice was then propelled from the machine at approximately 80 km h
-1

 through 103 

a 20-cm diameter hose powered by a hydraulic air seeder fan. The hose was directed toward the 104 

wheat across the entire plot (2m x 2m) in a continuous motion at a 45-degree angle for 105 

uniformity between plots.  106 
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The spectral behavior of each plot was recorded one day prior to the hail application and 107 

at 1, 7 and 14 days after hail application. An adjacent field that did not have split-plot cages was 108 

used for reflectance measurements at harvest. Spectral behavior was recorded using a dual fiber 109 

system containing two USB2000 radiometers (Ocean Optics Inc. Dunedin, FL, U.S.A.). These 110 

radiometers have a sampling range of 400-900 nm, an interval of 0.3 nm, and a spectral 111 

resolution of 1.5 nm. The upwelling fiber had a 25° field of view and was held 1 m above the top 112 

of the canopy. This provided an area with a diameter of approximately 0.44 m. The downwelling 113 

fiber was equipped with a cosine corrector to measure incoming irradiance. The two radiometers 114 

were inter-calibrated using a white Spectralon panel (Labshere, Inc., North Sutton, NH, U.S.A.). 115 

The fibers were attached to a painter’s pole to minimize the influence of the user on the 116 

reflectance and the pole was stabilized using a tripod. For more details on the radiometer system 117 

see Rundquist et al. (2004). Each reflectance reading was an average of eight scans collected 118 

over eight random positions over each plot. The plot level reflectance was an average of these 119 

readings over both caged and uncaged plots (n = 128). Since the plots had not been divided yet, 120 

there were fewer reflectance readings at the start of the experiment (n = 64). Similarly, there was 121 

an increased number of reflectance observations at harvest (n = 296) to fully characterize the 122 

variability of the adjacent field. The median reflectance from each of the split-plot treatments 123 

was used to determine the plot-level reflectance. For statistical summaries, the hyperspectral 124 

reflectance was used to simulate the Landsat 8 spectral response curve where the standard error 125 

(SE) and coefficient of variation (CV) were calculated using Excel (v. 2013, Microsoft 126 

Corporation, Redmond, WA, U.S.A.) and the analysis of variance (ANOVA) between treatments 127 

was determined using R (v. 3.2.2 R Development Core Team, 2015). The fixed effect for the 128 

ANVOA tests was hail treatment and heading stage was a random effect. 129 
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 130 

Raster inputs for the risk model 131 

Three remotely sensed products were utilized for this study: a NOAA hail size estimation 132 

product, Landsat Surface Reflectance from the Climate Data Record (CDR), and Moderate-133 

resolution Imaging Spectroradiometer (MODIS) surface reflectance. In general, the NOAA hail 134 

size product provides information about the presence of hail in an area and the reflectance 135 

products identify changes in albedo and the details of the model are outlined in Fig.2. The 136 

NOAA hail product is an optimal candidate for inclusion in the model. This product is created by 137 

blending remotely sensed three dimensional storm intensity data from multiple WSR-88D radars 138 

covering the area of interest with the vertical atmospheric temperature profile (Lakshmanan et al. 139 

2007, Smith and Lakshmanan 2009).  This provides an estimate of maximal hail size aloft in a 140 

thunderstorm, with a horizontal resolution of 0.01 degree longitude by 0.01 degree latitude 141 

(approximately 1 km
2
). Although the product is intended for diagnosis of hail size aloft, Ortega 142 

et al. (2009) showed a strong relationship between predicted and measured hail size. The NOAA 143 

hail product is produced every two minutes; however, this resolution is much more frequent than 144 

necessary for seasonal use. One product representing maximal hail size over the period of 145 

highest risk should be sufficient for the model.  146 

Developing wheat grains are capable of germinating before maturity (Gosling et al., 147 

1981; Robertson and Curtis, 1967); therefore, a hail event that occurs any time after wheat 148 

flowering, but before harvest, would increase the risk of producing volunteer wheat.  The date 149 

when wheat reaches maturity varies each year, but the United States Department of Agriculture 150 

(USDA) publishes a crop progress report that includes the percentage of wheat harvested by 151 

date, which can be used to estimate the period between flowering and harvest. For the product 152 
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presented below, we used the period starting three weeks (21 days) before 50% of wheat was 153 

harvested and ending when 90% of wheat had been harvested as reported for Nebraska, U.S.A. 154 

This encompasses a mean period of 31.8±2.1 (SD) days for the study area between 2003 and 155 

2013 (Table 1).This period may need to be adjusted when applied to other locations as rates of 156 

crop maturity vary regionally.  157 

There are several surface reflectance products available that have a variety of benefits 158 

and limitations based on spatial and temporal resolution. MODIS has an excellent temporal 159 

resolution (daily and 8-day composites); however, the spatial resolution is quite low (250, 500, 160 

or 1,000 m depending on the spectral band). Conversely, the Thermal Mapper (TM), Enhanced 161 

Thermal Mapper Plus (ETM+), and Operational Land Imager (OLI) sensors aboard the Landsat 162 

series of satellites have higher spatial resolution (30 m) but are limited by the reduced revisit 163 

time (ca. 16 days). When cloud cover and data gaps caused by the scan line corrector error for 164 

Landsat 7 are accounted for, the gap between image acquisitions can be quite large for some 165 

regions. Gaps can be filled using adjacent data (Maxwell et al., 2007), but this approach may not 166 

be ideal due to the potentially limited spatial extent of a hail event.  167 

A combination of both MODIS and Landsat images can be used to provide adequate 168 

spatial and temporal coverage of the region of interest. Surface reflectance products developed 169 

for both MODIS (Vermote and Kotchenova, 2011) and Landsat (Masek et al., 2006) have been 170 

shown to be consistent with ground-based measurements  (Maiersperger et al., 2013). Landsat 5 171 

(LT) imagery was used for this study; however after satellite failure, subsequent maps were 172 

developed using Landsat 7 (LE). Landsat 8 imagery could be used, but it was not explored as this 173 

product was not available at the time of the study.  174 
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There are four, 8-day composites composed of MODIS surface reflectance (09) available, 175 

which are based on either the Aqua (MYD) or Terra (MOD) sensor at a 250 (Q1) or 500 m (A1) 176 

spatial resolution.  The CDR and MODIS surface reflectance products were accessed as *.HDF 177 

files through EarthExplorer. All remaining processing steps were conducted in ArcGIS (v. 10.2, 178 

ESRI, Inc.) using python’s integrated development environment, IDLE, (v. 2.7.3 Python 179 

Software Foundation). Due to limitations in the IDLE environment, the *.HDF files were 180 

converted to GeoTIFFs. 181 

Bands 3, 4 and 17, corresponding to red, NIR and flags, were extracted from the of the 182 

Landsat CDR product. While other bands in the visible range (e.g. green) may be more useful for 183 

identifying hail damage in immature wheat, the red band is frequently available from satellite 184 

sensors at better spatial resolutions (e.g. MODIS 250 m). A 1.02 km (34 pixel) buffer was placed 185 

around the cloud, cloud shadow, and snow flagged pixels (band 17) since pixels surrounding 186 

clouds can also be impacted (Irish et al., 2006).  This buffer was then used to remove these 187 

contaminated pixels from the red and NIR reflectance bands. All Landsat scenes acquired on the 188 

same day were mosaicked together. A similar pre-processing approach was used for MODIS 189 

surface reflectance products. The quality control flags are band 12 in the 500 m surface 190 

reflectance products (MOD09A1 and MYD09A1). Pixels that were flagged as cloud-191 

contaminated were buffered by 1.0 km (2 pixels) and removed from the red and NIR reflectance 192 

bands in the 250 m surface reflectance products (MOD09Q1 and MYD09Q1).  193 

 194 

Gap-filling approaches   195 

Gap-filling methods using the same scene information, such as those used to fill in 196 

missing data from cloud covered pixels and gaps in the Landsat 7 data after the scan-line 197 
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correction failure, introduce errors because of assumptions in interpolation (Maxwell et al., 2007; 198 

Zhang et al., 2007). In order to reduce gaps between Landsat scenes, we used a different 199 

approach that relies on measured data rather than interpolation. The minimum values of red and 200 

the maximum values of NIR reflectance for a given year were identified for all imagery between 201 

84 days before 50% harvest to when 50% of wheat was harvested (Table 1). Imagery collected 202 

during this period was defined as “early” imagery. This period represents healthy wheat prior to 203 

harvest and/or hail damage. The maximum red and NIR reflectance between when 50% of wheat 204 

had been harvested and 31 days after 90% of wheat had been harvested (Table 1) represents 205 

senescing wheat, harvested wheat fields, and fields impacted by hail. The imagery collected 206 

during this period was defined as “late” imagery. Since hail damage causes increases in both red 207 

and NIR reflectance, differences between “early” and “late” products provide a change in 208 

reflectance that can be used to identify wheat damaged by hail. This approach should maintain 209 

small differences in reflectance due to hail damage, although sensitivity to these differences may 210 

be reduced as true maximum and minimum values may not be captured in the acquired imagery.  211 

Even with this approach there are data gaps in the Landsat imagery. To accommodate 212 

these regions we utilized a similar approach using MODIS surface reflectance products. Since 213 

the day of the 8-day composite is not the actual date of acquisition for a given pixel, we used a 214 

slightly narrower range of imagery excluding the 8-day composite at the start and end of each 215 

cycle based on the USDA percent harvest threshold described for Landsat. See Table 1 for the 216 

exact dates.  217 

 218 

Risk model development 219 
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Too many thresholds may be confusing to end-users. Thus, we limited our study to four 220 

thresholds at each level. Very low risk was assigned a ‘0’, low risk a ‘1’, moderate ‘2’, and high 221 

‘3’.  The U.S. National Weather Service defines severe hail as being 25.4 mm (1”) or greater 222 

(Cavanaugh and Schultz, 2012); however, when winds are strong enough, crop damage can 223 

occur with much smaller hail sizes (Changnon, 1971; Sánchez et al., 1996; Schiesser and 224 

Backfile, 1990). Therefore, no measured hail was classified as ‘0’, hail less than 12.7 mm (0.5”) 225 

was classified as ‘1’, 12.7-25.4 mm as ‘2’, and any measured hail greater than 25.4 mm was 226 

classified as ‘3’, the highest risk level (Fig. 2).  227 

Senescing wheat typically has a reduction in NIR; however, increases in NIR can be 228 

attributed to hail damage (see Spectral behavior of mechanically hailed plots for details 229 

regarding the impact of hail on the wheat spectral signature). Increases of 10% in NIR 230 

reflectance between the early and late imagery were classified as ‘3’ while any increase in NIR 231 

less than 10% was classified as ‘2’. Any decrease in NIR was classified as ‘1’. Hail damage 232 

increases red reflectance; but, so do senescence and chlorophyll degradation. Therefore, an 233 

additional threshold was applied for reflectance in the red region. Increases in red reflectance 234 

over 20% were classified as ‘3’ while increases between 10 and 20% were classified as ‘2’. 235 

Increases in red reflectance that were less than 10% and any decreases in reflectance were 236 

classified as ‘1’ (Fig. 2).  237 

The final risk map for the entire region of interest was created with the three reclassified 238 

risk inputs (hail size, NIR and red reflectance; Fig. 2). The output for the risk map results in 239 

potential values between 0 and 27, which can be reassigned to new risk thresholds. Very low risk 240 

was classified to values ‘≤ 6’, low risk to values ‘7-17’, moderate risk to values ‘18-26’, and high 241 

risk to the value ‘27’ 242 
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This product would be suitable to provide to wheat growers within the region of interest 243 

as they know which fields or adjacent fields were planted with wheat and were truly at risk.  244 

Because the entire region of interest contains other land cover uses other than wheat (e.g. urban, 245 

non-wheat crops, native vegetation), a land cover classification approach would reduce false 246 

positives. Most classification schemes require a large data set with many observations (i.e. high 247 

temporal resolution) to separate vegetation types and accurate classification in real-time is 248 

difficult (Bargiel and Herrmann, 2011; Starks et al., 2014). Although there have been recent 249 

developments in real-time classification, they have generally been broad and not ideal for 250 

separating individual crop types (Huth et al., 2012).  251 

This study utilized a simple classification scheme to mask most of the non-wheat area 252 

during the study period. The approach used NDVI maps during the spring growing season of 253 

wheat (April 15
th

 to June 15
th

), and during the summer (July 15
th

 to August 31
st
). Maximum 254 

NDVI values from all available Landsat imagery during both time periods were calculated. 255 

Pixels in which NDVI was less than 0.6 in the spring or above 0.6 in the summer were deemed to 256 

be some vegetation type other than wheat and masked. One drawback to using such a simple 257 

classification is that there will be some misclassifications. For example, similar to wheat, 258 

perennial crops like alfalfa are typically green early in the spring  and are harvested periodically 259 

during the growing season (Wardlow et al., 2007). This creates a cyclical pattern in NDVI that 260 

may cause inclusion of some alfalfa fields, which would over-estimate risk for the purpose of 261 

validating the model using county-wide hail claims.  262 

The risk model was applied to Cheyenne County, NE (41.22°N 102.99°W). While much 263 

of western Nebraska is primarily pastureland, the majority of Cheyenne County produces either 264 

hard red or hard white winter wheat (Van Meter et al., 2012). While risk maps using just Landsat 265 



13 

 

reflectance data could be produced as far back as the availability of Landsat surface reflectance 266 

products (i.e. 1982), this study focused on the time period when insurance data were available for 267 

comparison with risk maps: 2003 to 2013. The insurance data were provided by the USDA Risk 268 

Management Agency (RMA) and aggregated only at the county-level due to privacy concerns. 269 

Available information included county, crop, type of damage, date of loss, and acreage. For each 270 

year in the study, the acreage classified as hail damage in wheat was aggregated for Cheyenne 271 

County, Nebraska, U.S.A. during the time period determined to be at risk (i.e. NOAA columns; 272 

Table 1). This excludes hail damage to wheat prior to heading that would not be of interest for a 273 

WCM-vectored virus risk product. 274 

 275 

Results and Discussion 276 

Spectral behavior of mechanically hailed plots 277 

As was observed in other studies that attempted to identify hail damage in various crops 278 

(Jedlovec et al., 2006; Yuan et al., 2002), hail events decreased NDVI (Fig. 3; Table 2).  279 

However, NDVI was not always sensitive to hail damage. For example, there was no significant 280 

change in NDVI (ANOVA: f-value = 0.08, p-value = 0.79, Df = 1/51, Table 3) when wheat was 281 

hailed at the early dough stage (pre-hail NDVI = 0.55 vs. post-hail NDVI = 0.54, Table 2). Thus, 282 

NDVI can be a poor indicator of hail damage by itself.  283 

When wheat was hailed, both red and NIR reflectance increased at all growth stages 284 

examined (Table 2) and were significantly different from healthy wheat (ANOVA: f-values 16 – 285 

127, p-values < 0.001, Df = 1/30, Table 3); however, for red reflectance at the soft dough stage 286 

this was only weakly significantly different from red reflectance at harvest (ANOVA: f-value = 287 

4.6, p-value = 0.04, Df = 1/51, Table 3). This was not surprising as both the hail damage and 288 
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crop senescence increase red reflectance. Red reflectance of hailed wheat remained 289 

distinguishable from background healthy wheat reflectance at the middle milk, early dough, and 290 

soft dough stages for at least seven days (Table 3). However within the seven to fourteen day 291 

window the hail signature for both red and NIR reflectance faded and became indistinguishable 292 

from reflectance of wheat at harvest (3; Table 3). This indicates that many observations (i.e. high 293 

temporal resolution) are needed to identify the spectral signature of hail to senescing wheat. 294 

While the week long intervals conducted in this study match the rough timeframe of Landsat 295 

observations, it was not enough to determine with specificity the length of the spectral signature, 296 

nor determine the factors that caused it to degrade.  297 

Since this study only examined mechanically hailed wheat, it is possible that naturally 298 

hailed wheat reflectance may differ from these results. The change in the orientation of the stalks 299 

was likely the main contributor to increases in albedo as it is well known that changes in view 300 

angle impact spectral behavior (e.g. Jackson et al. 1990). Changes in albedo may be useful in 301 

identifying hail damage on a regional scale in situations when vegetation is senescing.  302 

Alternatively to identifying hail damage, identifying volunteer wheat would be of value 303 

as WCM propagation is highest when volunteer wheat emerges before harvest. Wheat grain is 304 

capable of germinating into volunteer wheat at all four growth stages; however, the risk is rather 305 

low initially and increases as wheat matures (Gosling et al., 1981; Robertson and Curtis, 1967). 306 

For the study plots, volunteer wheat was only observed 14 days after hailing the hard dough/ripe 307 

plots (Fig. 1). The emergence of volunteer wheat only marginally increased NDVI (Table 2) with 308 

only a weakly significant difference from wheat at harvest (ANOVA: f-value = 6.8, p-value = 309 

0.01, Df = 1/51). Additionally, NDVI will be an unreliable indicator using moderate to coarse 310 

spatial (e.g. 30 to 500 m) imagery as volunteer wheat emergence tends to be localized. Thus, the 311 
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best metrics using civil sensors will be to observe changes in albedo such as the one that was 312 

used in developing the risk model (see Risk model development for details).  313 

 314 

Application of the risk model 315 

The risk map (Fig. 4A) was a composite of the three inputs, the NOAA hail product (Fig. 316 

4B), NIR (Fig. 4C) and red (Fig. 4D) reflectance based on the date ranges determined from 317 

USDA harvest reports (Table 1). While the range of dates for 50% harvest in Nebraska for the 318 

duration of the study was only 23 days, there was some variation. Harvest happened the soonest 319 

in 2012 and latest in 2011. This risk map was further processed to minimize the inclusion of land 320 

cover types other than wheat fields (Fig. 5). However, the NOAA hail product was still 321 

provisional and not available for all years in this study. For the purpose of comparing risk maps 322 

with hail claims (Fig. 6), only reflectance-based models were used. The hail reports included in 323 

this comparison were limited to the period in which the NOAA hail product was integrated 324 

(Table 1) even though this product was not utilized in the model. For years when the area for hail 325 

claims was more than 400 ha, there was a moderate trend (R
2
 = 0.72) between the area where 326 

hail claims were received and the area determined to be at risk (Fig. 6B). When all years were 327 

included, this trend was not significant and extremely weak (R
2
 < 0.01). The model over-328 

estimated when ‘low risk’ hail claim values were included. Ideally, field-level data would be 329 

used to validate this model; however, privacy concerns limit the access to these data. Adding the 330 

NOAA hail product may improve this relationship as relying entirely on the reflectance products 331 

will likely over-estimate actual risk. However, this remains to be examined due to limitations in 332 

data access.  333 
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While Landsat data was sufficient for most years, MODIS risk maps provided some 334 

additional coverage. Due to the more coarse spatial resolution, the MODIS maps averaged the 335 

risk in an area and extremes in scale were reduced. For example, there were fewer areas in the 336 

very low and high risk categories but a higher percentage of areas in the low and moderate risk 337 

categories. This suggests that improvements in accuracy for small target areas may be possible 338 

when using higher spatial resolution four-band imagery, such as GeoEye, WorldView-2, SPOT 339 

or RapidEye.  340 

While hail increased NIR reflectance, over time NIR reflectance decreased. Thus, the 341 

further the image was acquired from the actual hail event, the lower the level of risk that was 342 

assessed by the model. This means that some high risk areas will be underestimated. Inclusion of 343 

additional data sources may help resolve some temporal and spatial issues, but will increase 344 

processing time to produce the final map(s). Data fusion techniques may be beneficial for 345 

timelier reflectance estimates; however, care must be taken to not remove the hail signature 346 

during processing. Costs and benefits, in addition to accuracy assessments, need to be fully 347 

examined before the model can be put into operation.  348 

 349 

Potential improvements for the model 350 

There were several weaknesses in the current model. Spatial and temporal resolution 351 

limited the current model. The increase in reflectance due to a hail event was fairly short-lived 352 

(<= 7 days); therefore, data with high temporal resolution was needed to catch all events. In 353 

addition, hail events tend to be localized in Nebraska. Data with high spatial resolution was also 354 

needed to identify risks at the field-level. It was expected that if spatial and temporal resolution 355 

of the inputs were low, risks would be underestimated. Utilizing alternative inputs, such as 356 
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satellite imagery from newly launched sensors or unmanned aerial vehicles, may help improve 357 

the temporal and spatial resolution of reflectance data input into the model. There is potential for 358 

improved temporal resolution by including European Space Agency data as many Landsat-like 359 

products are being developed for Sentinel-2 (Zhu et al., 2015). Additionally, the spatial 360 

resolution of the NOAA hail product may not be fine enough to identify fields impacted by hail 361 

in isolated storms; however, minor improvements could be made using its high observation 362 

frequency. For example, the highest risk of volunteer wheat occurs when the wheat is mature. 363 

Early hail events could be classified at a lower risk than those that occur near harvest. However, 364 

this does increase the complexity of the model.  365 

Secondly, the model does not identify fields where volunteer wheat was likely to occur. 366 

Identifying volunteer wheat growth or the potential for its growth would be beneficial. 367 

Identifying volunteer wheat was technically feasible using reflectance data; however, there are 368 

several problems with this approach. Volunteer wheat was generally localized, clumped, and 369 

stunted (Fig. 1: HD Post 14). It will be difficult to distinguish between pre-harvest volunteer 370 

wheat resulting from hail events and post-harvest volunteer wheat that poses less risk for virus 371 

transmission. These factors make it difficult to use reflectance for identifying volunteer wheat, 372 

especially for coarse data sets that may result in many mixed pixels. Alternatively, other 373 

elements that contributed to volunteer wheat growth could be included in the model. For 374 

example, the presence of dislodged grain increased the likelihood of producing volunteer wheat, 375 

but the grains themselves must germinate to pose a risk. Generally storms that bring hail provide 376 

moisture needed for germination; however, it is not uncommon for the soil to dry rapidly after a 377 

rain event, reducing the likelihood of germination. Thus, incorporating local weather data may 378 

improve risk determination. Additionally, residue remaining after harvest can shelter dislodged 379 
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grain and newly germinated volunteer wheat and prevent it from drying quickly. Since farmers 380 

may not harvest severely hailed fields, the increase in surface residue may help protect dislodged 381 

grains. Methods for estimating residue cover (Zheng et al., 2012) may also improve the risk 382 

model.  383 

The maturity of the grain was another factor that impacted risk. Identification of the 384 

phenological stage at the hail event could improve the model through the assignment of different 385 

risk potential to different stages. Several remote sensing approaches have been developed for 386 

identifying phenological changes in wheat and other crops (Lu et al., 2013; Nguy-Robertson et 387 

al., 2013); however, the biggest limitation to incorporating these models was the spatial and 388 

temporal resolution necessary to produce accurate results. Some spatial limitations may be 389 

mitigated using a regional estimate if planting dates and maturity rates for the wheat crop in the 390 

area were similar. Temporal resolution issues can be mitigated, in part, by using interpolation 391 

techniques as phenology progresses at a predictable pace (Nguy-Robertson et al., 2013). 392 

 393 

Conclusions 394 

This study provided a conceptual framework for developing a risk map for wheat 395 

diseases caused by WCM-vectored viruses based on pre-harvest hail events. Traditional methods 396 

that use NDVI were found to be unsuitable due to low chlorophyll content in wheat at harvest. 397 

Hail events increased canopy albedo. While red reflectance increased during senescence, NIR 398 

reflectance typically decreased. Therefore, any increase in NIR combined with large increases in 399 

red reflectance over time can be used to assign some level of hail risk. The model presented in 400 

this study utilized Landsat TM/ETM+ data due to necessary spatial resolution to resolve 401 

localized hail events commonly found in the Central Plains of the U.S.A. MODIS imagery was 402 
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used to help gap-fill missing data due to cloud cover and the scan-line error in Landsat 7 403 

imagery. The model was also supported by NOAA hail maps that estimated the size of hail that 404 

reached the ground in a given region. Once the size of the hail was known, a risk level was 405 

assigned. The final risk map was a combination of each of these individual risk products.  406 

We examined the risk maps developed for one county, Cheyenne County in Nebraska, 407 

and found that they roughly correlated to insurance claims from hail damage, thus providing 408 

support for the approach. However, there were some limitations in the method that need to be 409 

addressed before this product can become operational. First, the increase in albedo due to a hail 410 

event was fairly short-lived (<7 days); thus, timely imagery was necessary. While it could be 411 

technically feasible to use a data set with high temporal resolution, such as MODIS, spatial 412 

resolution was also a concern due to the localized nature of the hail events.  These factors will 413 

result in an underestimation of risk. In contrast, overestimation will occur when fields other than 414 

wheat are included in the model. Accurate classification is necessary for the validation of the 415 

model. 416 

Further research is needed to verify hail damage predicted by these maps in real-world 417 

situations. The biggest improvement in risk predictions would be derived from having data sets 418 

with high temporal and spatial resolution; however, this is unlikely to occur in the near-future. 419 

This risk map provides a level of risk for volunteer wheat to provide a summer “green bridge” 420 

for mites and virus; however, other environmental factors govern the extent of germination of 421 

grain shelled out by hail. Other improvements in these predictions could potentially be made by 422 

incorporating ancillary data such as weather and phenology to provide a level of risk due to the 423 

potential for volunteer wheat germination.   424 

 425 
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List of Tables 599 

Table 1. Start and end dates (Julian day) for raster integration based on USDA harvest reports.  600 

Year 

NOAA Landsat MODIS 

start end 
Early 

Reflectance 
Late 

Reflectance 
Early 

Reflectance 
Late 

Reflectance 
start end start end start end start end 

2003 173 204 110 173 173 235 118 165 181 227 
2004 173 204 110 173 173 235 118 165 181 227 
2005 169 203 106 169 169 234 114 161 177 226 
2006 162 195 99 162 162 226 107 154 170 218 

2007 170 201 107 170 170 232 115 162 178 224 
2008 179 209 116 179 179 240 124 171 187 232 
2009 177 210 114 177 177 241 122 169 185 233 
2010 179 210 116 179 179 241 124 171 187 233 
2011 181 213 118 181 181 244 126 173 189 236 
2012 158 186 95 158 158 217 103 150 166 209 
2013 180 213 117 180 180 244 125 172 188 236 

 601 

 602 
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Table 2. Variation in red and NIR reflectance and the normalized difference vegetation index 604 

(NDVI) collected over mechanically hailed wheat at different growth stages. The sample size 605 

(n), standard error (SE), and coefficient of variation (CV) are reported. *Spectra collected over 606 

non-hailed healthy wheat. **Increased standard error are for sites with volunteer wheat   607 

Crop Stage Days after hail n Red SE CV NIR SE CV NDVI SE CV 

Middle Milk 

* 8 4.79 0.41 8.64 38.21 3.17 8.29 0.77 0.0188 2.43 

<1 16 11.49 2.09 18.17 45.61 5.39 11.82 0.60 0.0622 10.42 

7 16 17.28 3.82 22.09 31.00 3.59 11.58 0.29 0.0632 21.80 

14 16 14.38 1.75 12.19 24.90 1.58 6.36 0.29 0.0391 13.25 

Early Dough 

* 16 8.04 0.83 10.35 27.81 1.97 7.07 0.55 0.0466 8.47 

0 16 11.30 1.84 16.32 38.35 5.63 14.67 0.54 0.0673 12.40 

7 16 21.83 2.57 11.77 36.84 2.61 7.08 0.17 0.0199 11.78 

14 16 23.91 2.46 10.29 30.96 2.82 9.11 0.13 0.0161 12.44 

Soft Dough 

* 16 13.42 1.51 11.23 29.19 3.44 11.78 0.37 0.0468 12.68 

0 16 22.10 2.83 12.79 31.09 3.85 12.37 0.26 0.0601 23.34 

7 16 26.31 2.60 9.88 34.04 2.61 7.67 0.13 0.0159 12.36 

14 16 18.06 0.50 11.17 26.50 0.49 7.35 0.19 0.0091 19.07 

Hard 

Dough/Ripe 

* 16 17.64 2.52 14.28 27.82 3.78 13.60 0.27 0.0161 5.95 

0 16 27.69 3.02 10.91 37.45 3.79 10.11 0.15 0.0184 12.27 

7 16 20.04 0.55 10.88 27.10 0.67 9.85 0.15 0.0032 8.41 

14** 16 18.86 4.72 15.90 30.08 7.52 10.57 0.27 0.0680 21.37 

Harvest 
* 37 18.77 0.93 30.20 27.11 1.08 24.23 0.19 0.0068 21.68 
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Table 3: ANOVA results between the red reflectance, near-infrared (NIR) reflectance and the 609 

normalize difference vegetation index (NDVI) of healthy wheat collected prior to being hailed, at 610 

harvest, or concurrently for those values collected pre-hail, <1, 7, and 14 days after being hailed. 611 

The fixed effect for the ANVOA tests was hail treatment and heading stage was a random effect. 612 

a
No significant difference, all other values were significant at 

b
90% or greater than 99% (no 613 

notation) levels of confidence. Bold indicates similarity between measurements. *Indicates 614 

reflectance over healthy wheat was not collected for these dates.
 

615 

Compared 

to healthy 
wheat: 

Days 

after 
hail 

Band 

or VI 

Middle Milk Early Dough Soft Dough Hard Dough/Ripe 

f-value p-value f-value p-value f-value p-value f-value p-value 

P
ri

o
r 

to
 h

ai
l 

ev
en

t 

<1 Red 78.7 1.02E-8 41.2 4.39E-7 127 2.64E-12 106 2.32E-11 

<1 NIR 15.8 6.51E-4 51.4 5.61E-08 44.9 1.99E-7 44.9 2.02E-7 

<1 NDVI 57.3 1.45E-7 0.0752 0.786a 35.9 1.42E-6 164 1.09E-13 

7 Red 83.9 5.83E-9 360 2.98E-18 292 5.33E-17 8.71 6.10E-3 

7 NIR 14.6 9.45 E-4 8.95 5.51E-3 16.3 3.45E-4 2.55 0.120a 

7 NDVI 428 6.61E-16 896 6.64E-24 381 1.33E-18 300 3.66E-17 

14 Red 229 4.03E-13 592 2.63E-21 52.7 4.39E-8 1.70 0.203a 

14 NIR 154 2.14E-11 11.2 2.26E-3 8.23 7.48E-3 2.76 0.107a 

14 NDVI 1041 5.11E-20 1174 1.30E-25 150 3.39E-13 0.0361 0.851a 

A
t 

h
ar

v
es

t 

<1 Red 23.9 1.04E-5 25.3 6.42E-6 4.63 0.0361b 35.3 2.56E-7 

<1 NIR 95.5 2.81E-13 34.1 3.65E-7 30.8 1.02E-6 35.0 2.74E-7 

<1 NDVI 581 1.57E-29 410 4.87E-26 10.9 1.77E-3 12.9 7.54E-4 

7 Red 0.782 0.381a 5.24 0.0262b 26.4 4.47E-6 0.781 0.381a 

7 NIR 4.33 0.0424b 3.49 0.0676b 14.1 4.54E-4 0.245 0.623a 

7 NDVI 29.7 1.48E-6 8.30 5.79E-3 34.8 2.96E-7 19.1 6.02E-5 

14 Red 8.67 4.87E-3 12.5 8.77 E-4 0.199 0.657a 6.92E-3 0.934a 

14 NIR 2.42 0.126a 3.00 0.0891b 0.422 0.519a 3.47 0.0684b 

14 NDVI 23.9 1.07E-5 38.9 8.67E-8 0.531 0.469a 6.76 0.0121b 

C
o
ll

ec
te

d
 w

it
h
in

 

 o
n

e 
d

ay
 

7 Red * * 116 8.00E-12 94.5 8.86E-11 * * 

7 NIR * * 1.12 0.297a 20.1 9.97E-5 * * 

7 NDVI * * 262 2.30E-16 337 7.41E-18 * * 

14 Red 170 6.82E-14 52.8 4.33E-8 * * * * 

14 NIR 16.4 3.39E-4 2.37 0.134a * * * * 

14 NDVI 314 1.92E-17 405 5.74E-19 * * * * 
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List of Figures 617 

Fig. 1. Representative digital photos taken at nadir for the phenological stages of middle milk 618 

(MM), early dough (ED), soft dough (SD), and hard dough (HD) of the mechanically hailed sites 619 

for healthy wheat and wheat <1, 7, and 14 days post-hail.  Healthy wheat after harvest is 620 

provided for reference. Volunteer wheat can be identified in the HD post 14 days.  621 

 622 
MM    Pre       Post <1         Post 7          Post 14 623 

 624 
ED    Pre       Post <1         Post 7          Post 14 625 

 626 
SD   Pre       Post <1         Post 7          Post 14 627 

 628 
HD   Pre       Post <1         Post 7          Post 14 629 

 630 
         Harvested  631 
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Fig. 2. Flowchart for the development of the mite-vectored virus risk product from hail events. 632 

 633 

  634 
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Fig. 3. Plot-level wheat reflectance collected prior to and after mechanical hail damage at four 635 

physiological stages of grain maturity (A) middle milk, (B) early dough, (C) soft dough, and (D) 636 

hard dough ripe. The Zadoks (Z) stage and days after reaching the middle milk stage at the hail 637 

event was indicated. Reflectance of harvested wheat and normalized difference vegetation index 638 

(NDVI) values are shown for reference.  639 

 640 

 641 
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Fig. 4. The A) risk model for Cheyenne County, NE, U.S.A. in 2008 was based on three inputs: 

B) a radar-based maximal hail size during the period of highest risk for grain mature enough for 

volunteer wheat, C) the difference between maximal near infrared reflectance before and after 

harvest, and D) the difference between minimum red reflectance before harvest and maximum 

red reflectance after harvest.  
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Fig. 5. Example of a risk map from hail events in 2010 produced for Cheyenne County, NE 

U.S.A. after using the normalized difference vegetation index as a crude land cover classification 

tool to separate wheat from surround vegetation.  
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Fig. 6. Comparison of the risk maps with hail claims made during the integration of the NOAA 

hail product (Table 2): A) Area of hail claims and area identified as ‘at risk’ using the reflectance 

only products in Cheyenne County, NE, U.S.A. by year and B) the relationship between these 

two measurements for years when hail claims totaling less than 400 ha were excluded.  

 

 




